
GIT CHEATSHEET
Concepts (see also: man gitglossary)

Common commands
Setting it all up:

Getting started

Typical workflow

Display information

Branching workflow

• $ git config --global user.name "Max Mustermann"
• $ git config --global user.email "maxine@musterfrau.de"

• Starting from scratch:
 • $ cd project/
 • $ git init
• Cloning another repository
 • $ git clone URL

1. Add, remove or change some files
2. Stage the changes. You can decide which changes will be
 included in the next commit by putting them into the
 so-called staging area with
 • $ git add <FILE>
 • $ git rm <FILE>
 • $ git add --interactive (or -i for short)
 You can reset the staging area with:
 • $ git reset HEAD
3. Commit the staged changes
 • $ git commit
 You are asked to input a commit message which should
 ideally follow these formatting rules:

4. Optionally, push the changes to a remote server where
 your collaborators can see and review your changes.
 • $ git push <remote> <branch>
 Often "master" is the relevant branch and "origin" is the
 remote repository you work on, so this will often suffice:
 • $ git push origin master

• "git status" is the main command to view the status of
 the files in your repository
• "git log" displays the list of commits in the current branch.
 The "--graph" option adds a visualization of branches and
 the "--all" option includes other, diverged branches.
• There are advanced tools like "gitk" and "qgit" (with a
 graphical user interface) and "tig" (for the console) that
 provide tools to view the history and find information.

1. $ git branch featureX
2. $ git checkout featureX
3. implement the feature
4. $ git add --interactive; git commit
5. $ git checkout master
6. $ git merge featureX
7. $ git branch -d featureX

If you decide to stop any time, just commit your changes and
checkout master. To continue working on featureX, checkout
back into the featureX branch.

Short summary
<empty line>
Optional explanation

Deleted file X

The file was not needed
anymore, it used to be part
of an obsolete feature Y

Example:Structure:

Remotes
A "remote" describes a place that contains a git repository, from which
you can clone, pull, fetch and push.

Remotes can be:
• A local directory, like /home/me/repos/myproject
• A SSH path: ssh://user@host/home/.../myproject
• GitHub (pull-only): https://github.com/user/project.git
• GitHub (push+pull): git@github.com:user/project.git
• Welfenlab-GitLab: git@git.gdv.uni-hannover.de:user/project.git

WHEN SOMETHING GOES WRONG

origin:

Local:

$ git clone <URL>

master

origin:

Local:

master

master

do changes → $ git add [...] → $ git commit

commit1 commit2

commit1 commit2

commit1 commit2

origin:

Local:

mastercommit1 commit2

commit1 commit2 commit3 master

You decide to push the changes with "git push origin master",
but your commit is rejected because a collaborator already changed
something else! To fix this,
 1. fetch the remote branch
 2. merge your branch with the remote branch
 3. deal with possible merge conflicts
 4. try pushing again.
$ git fetch origin master

origin:

Local:

commit1 commit2

commit1 commit2
commit3 master

other master

other origin/master

$ git merge origin/master

origin:

Local:

commit1 commit2

commit1 commit2
commit3 master

other master

other origin/master

merged

origin:

Local:

$ git push origin master

commit1 commit2
commit3 master

other
merged

commit1 commit2
commit3 master

other
merged

Alternatively: $ git rebase origin/master → $ git push origin/master

Both: commit1 commit2 masterother commit3

note: whenever
"origin/master"
is left out, it points
to the same
commit as "master"!

• When you lose a commit (e.g. by deleting a branch), try "git reflog",
 a list of all recent actions, or "git fsck --unreachable".
 You can "git checkout <hash>" or "git show <hash>" to access the
 lost commits.
• To reset your local branch to the state of the remote branch,
 run "git reset --hard <remote>/<branch>"
• If you need to modify the commits in your history, there are a few
 solutions. However, it is strongly advised to avoid rewriting the
 history in a public remote repository - it will cause problems for your
 collaborators if they already pulled your old changes!
 • "git commit --amend" lets you edit the last commit. Combine this
 with "git add" or "git rm" to change the content of the last commit.
 • "git rebase --interactive <hash>" lets you cherry-pick, reword or
 squash individual commits.

BETTER SAFE THAN SORRY
Before you do something you don't quite understand, especially if the
command begins with "git reset" or "git rebase", create a branch at
your current state with "git branch <name>". If anything fails, you can
always "git checkout <name>" to restore the old state.

(creates a new branch)
(checkouts that branch)

(create the commits)
(go back to master)

(merge featureX into master)
(delete branch featureX)

A brief example

Repository

Checkout

Commit

Branch

Tag

master
origin
HEAD

= A database that can be used by git to produce a checkout
of any point in the project timeline.
= The action of updating your filesystem to reflect a
particular commit in the repository.
= A node in the graph, representing a snapshot in history.
Similar to revisions in SVN, but instead of being specific
to particular files, they span the whole repository.
= A pointer to a particular commit. The current branch is
"pulled along" with new commits, whereas other branches
behave like tags.
= A fixed pointer to a particular commit, used to mark
versions or other important points in time.
= The name of the default development branch
= The name of the default upstream repository
= A pointer to the currently checked out commit

nothing.

